

IntegrityAl at GenAl Detection Task 2

Detecting Machine-Generated Academic Essays in English and Arabic Using ELECTRA and Stylometry

Mohammad AL-Smadi January 19, 2025

Shared Task: GenAl Detection Task 2

Workshop on Detecting Al-Generated Content at COLING 2025.

27/09/2024

GenAl Detection Task 2 Overview

• **Objective:** Evaluate and rank models based on their ability to detect Algenerated academic essays.

• Languages: Arabic and English.

Phases:

- Training & Validation: Teams develop models using provided datasets.
- Evaluation Phase: Performance assessed on controlled datasets.
- Testing Phase: Final ranking based on model accuracy on unseen data.

Dataset Details

Dataset Structure:

Language	Train Size	Dev. Size	Eval. Size	Test Size
Arabic	2070 (AI: 925, Human: 1145)	481 (AI: 299, Human: 182)	886	293
English	2096 (AI: 1467, Human: 629)	1626 (AI: 391, Human: 1235)	869	1130

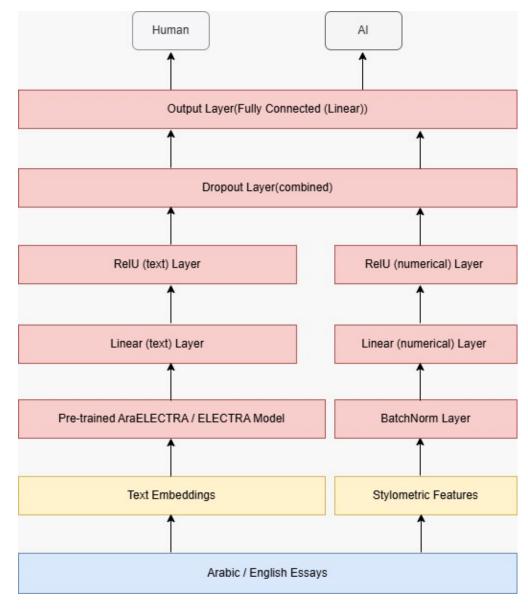
• Sources:

- Human-written: ETS Corpus of Non-Native Written English.
- **Al-generated:** Outputs from GPT-3.5, GPT-4, Gemini-1.5, Llama-3.1, and more.

• Languages:

Arabic and English.

Methodology


• Model Architecture: ELECTRA and AraELECTRA with stylometric feature integration.

Stylometric Features:

 Word Count, Sentence Count, Vocabulary Richness, Average Word Length, Commas, Periods.

• Training Enhancements:

- Dropout Layers, Batch Normalization, Fully Connected Layers, and ReLU Activation.
- Evaluation Metrics: macro F1-score.

Results

	Model	Eval. Phase F1 (%)	Testing Phase F1 (%)
	AraELECTRA_base_discriminator	99.8	98.4
Arabic	AraELECTRA_base_discriminator without features	-	96.9
	Baseline-Arabic Model	57.5	46.1
	ELECTRA_small_discriminator	100.0	98.5
	ELECTRA_small_discriminator without features	-	96.1
English	ELECTRA_large_discriminator	100.0	99.7
	Baseline-English Model	29.8	47.8

Key Insights:

- Stylometric features improved F1-scores by 1.5% (Arabic) to 2.4% (English).
- ELECTRA-Large achieved superior results but required more computational resources.
- Ranked **2nd** among 26 teams in English subtask (F1-score: **99.7**%).
- Ranked **1st** among 23 teams in Arabic subtask (F1-score: **98.4**%).

Conclusion & Future Work

•Key Takeaways:

- High detection accuracy proves the efficiency of ELECTRA-based models and Stylometric features in AI text detection.
- Maintaining models high performance while being computationally efficient, making it suitable for deployment on GPUs with moderate memory capacity.
- Using larger models, such as ELECTRA-Large, achieves even higher F1-score of 99.7% on the English dataset, highlighting the potential for further accuracy gains when using more computationally intensive models.

• Future directions:

- Enhancing real-time detection capabilities.
- Expanding the model's language support beyond Arabic and English.
- Adapting the approach for diverse academic fields and writing styles.

Thank You!

Mohammad AL-Smadi malsmadi@qu.edu.qa