BBN-U.Oregon's ALERT system at GenAl Content Detection Task 3:

Robust Authorship Style Representations for Cross-Domain Machine-Generated Text Detection

Detecting Al-Generated Content" Workshop @ COLING 2025

BB	Ν
----	---

RTX BBN Technologies Brian Ulicny, PhD

Date: January 19, 2025

0

OF OREGON

ERSITY

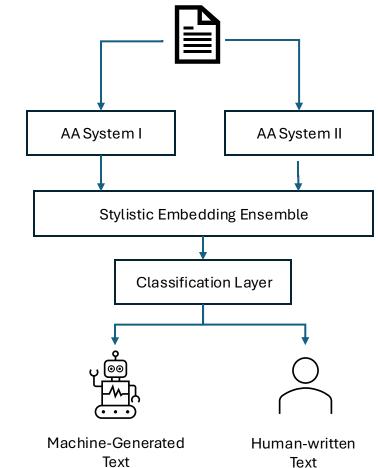
Hemanth Kandula1Chak Fai Li1Haoling Qiu1Damianos Karakos1Hieu Man Duc Trong 2Thien Huu Nguyen 2Brian Ulicny11RTX BBN Technologies2University of Oregon

Core Idea

Purpose: Detect cross-domain Machine-Generated Text (MGT) with robust authorship-style representations.

Key Components:

- Authorship Attribution (AA) Systems: (inspired from LUAR [1])
 - System I: Focuses on cross-genre robustness using hardpositive and hard-negative mining.
 - System II: Leverages semantic and lexical clustering for nuanced stylistic contrasts.
- Ensemble Approach: Combines stylistic embeddings from both systems for improved accuracy and domain generalization.



Machines generate stylistically consistent text that is stylistically different from human styles.

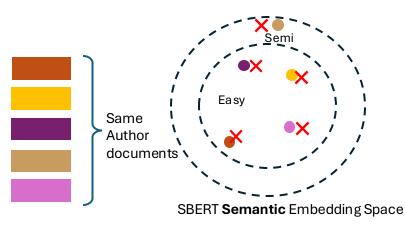
BBN RTX BBN Technologies [1] Rivera-Soto, Rafael A., et al. "Learning universal authorship representations." Proceedings of the 2021 conference on empirical methods in natural language processing. 2021.

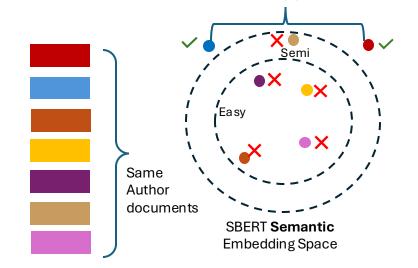
AA System I

- Focus: Cross-genre robustness through hard-positive filtering and hard-negative mining strategy that relies on topically distant documents.
- This approach encourages the model to learn stylistic consistency that is not conflated with topic similarity.

Hard-positive Filtering

- Use the two most topically distant documents available per author
- Focus on learning stylistic similarity rather than topical similarity.
- Exclude authors with insufficiently dissimilar document pairs





Hard

Author excluded due to insufficiently dissimilar document pairs

BBNe, S., & Boschee, E. (2024). Separating Style from Substance: Enhancing Cross-Genre Authorship Attribution through Data Selection and Presentation. arXiv preprint arXiv:2408.05193. This document does not contain technology or Technical Data controlled under either the U.S. International Traffic in Arms Regulation or the U.S. Export Administration Regulations".

AA System I

Select Data

(2 docs/author)

Hard Positives are

topically diff

RTX BBN

Technologies

Hard-negative mining

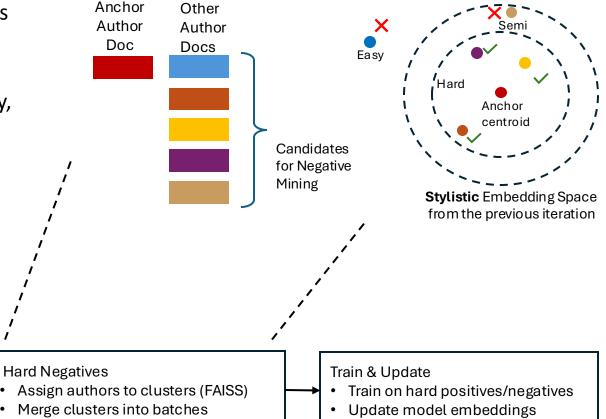
- Generates batches containing clusters of authors where each author contributes two documents:
 - one near the cluster center for similarity and the other in the outer reaches for dissimilarity, ensuring stylistic contrast

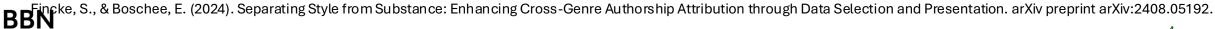
Embeddings & Clustering

K-means \rightarrow centroids

Previous Epoch doc vectors

 Centroids are grouped to fill each batch with a set number of authors, creating more coherent batches and ensuring that each batch offers challenging stylistic contrasts.





AA System II

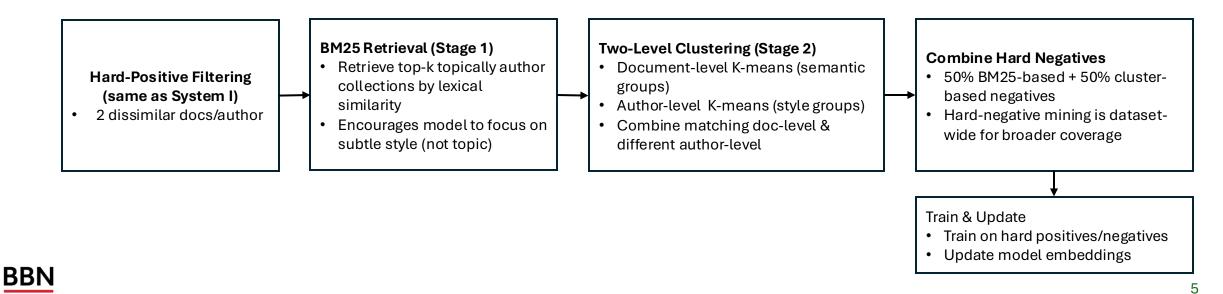
RTX BBN

Technologies

System II is designed to capture nuanced stylistic differences across authors through hard-positive filtering and a dual-strategy hard-negative mining approach.

Hard-positive filtering: Same as AA System I

Dual-strategy hard-negative mining



Results

BBN

RTX BBN

Technologies

Model	Development Set (20% RAID Train)				Evaluation Set
	Abstracts	Books	News	Average	(RAID Test)
AA System I (Sec: 3.1)	0.790	0.838	0.927	0.852	-
AA System II (Sec: 3.2)	0.975	0.939	0.982	0.965	0.893
Ensemble System	0.966	0.971	0.982	0.973	0.918

Table 1: Performance of Cross-Domain MGT Detection on RAID Dataset (Subtask-A: No Adversarial Attacks)

Model	Development Set (20% RAID Train)				Evaluation Set
WIUUEI	Abstracts	Books	News	Average	(RAID Test)
AA System I (Sec: 3.1)	0.612	0.650	0.912	0.794	-
AA System II (Sec: 3.2)	0.887	0.866	0.937	0.897	0.788
Ensemble System	0.876	0.934	0.978	0.930	0.826

Table 2: Performance of Cross-Domain MGT Detection on RAID Dataset (Subtask-B: with Adversarial Attacks)

The ensemble system achieves the higher TPR at FPR=5%, demonstrating high performance and robustness across domains and adversarial settings.

Conclusions

- Our ensemble-based authorship style representations from two complementary subsystems identify MGT across varied domains and adversarial attacks.
- By integrating advanced training techniques such as GradCache, contrastive learning, and hardpositive/negative mining, the system demonstrates strong cross-domain generalization. Thanks to capturing nuanced authorship-style representations, it achieves reliable MGT detection across various genres, LLMs, and adversarial attacks.
- Future work could extend the framework to handle more sophisticated adversarial attacks and support
 additional languages and low-resource domains, making it adaptable to a wider range of real-world
 applications
- Exploring domain adaptation techniques could improve robustness in detecting MGT by new or unseen models.

