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Purpose: Detect cross-domain Machine-Generated 
Text (MGT) with robust authorship-style 
representations.

Key Components:
• Authorship Attribution (AA) Systems: (inspired 

from LUAR [1])
• System I: Focuses on cross-genre robustness using hard-

positive and hard-negative mining.
• System II: Leverages semantic and lexical clustering for 

nuanced stylistic contrasts.
• Ensemble Approach: Combines stylistic 

embeddings from both systems for improved 
accuracy and domain generalization. 

Core Idea

Machines generate stylistically consistent text that is stylistically different from human styles.
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[1] Rivera-Soto, Rafael A., et al. "Learning universal authorship representations." Proceedings of the 2021 conference on empirical 
methods in natural language processing. 2021.
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• Focus: Cross-genre robustness through hard-positive filtering and hard-negative mining strategy that relies on 
topically distant documents. 

• This approach encourages the model to learn stylistic consistency that is not conflated with topic similarity. 

Hard-positive Filtering
• Use the two most topically distant documents available per author

• Focus on learning stylistic similarity rather than topical similarity. 

• Exclude authors with insufficiently dissimilar document pairs

AA System I
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Fincke, S., & Boschee, E. (2024). Separating Style from Substance: Enhancing Cross-Genre Authorship Attribution through Data Selection and Presentation. arXiv preprint arXiv:2408.05192.
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Hard-negative mining
• Generates batches containing clusters of authors 

where each author contributes two documents: 

• one near the cluster center for similarity and 
the other in the outer reaches for dissimilarity, 
ensuring stylistic contrast

• Centroids are grouped to fill each batch with a 
set number of authors, creating more coherent 
batches and ensuring that each batch offers 
challenging stylistic contrasts. 

AA System I
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Embeddings & Clustering
• Previous Epoch  doc vectors
• K-means → centroids

Select Data 
(2  docs/author) 
Hard Positives are 

topically diff  

Hard Negatives  
• Assign authors to clusters (FAISS)  
• Merge clusters into batches

Train & Update
• Train on hard positives/negatives  
• Update model embeddings 
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Fincke, S., & Boschee, E. (2024). Separating Style from Substance: Enhancing Cross-Genre Authorship Attribution through Data Selection and Presentation. arXiv preprint arXiv:2408.05192.
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System II is designed to capture nuanced stylistic differences across authors through hard-positive filtering and 
a dual-strategy hard-negative mining approach. 

Hard-positive filtering: Same as AA System I

Dual-strategy hard-negative mining
 

AA System II
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BM25 Retrieval (Stage 1)  
• Retrieve top-k topically author 

collections by lexical 
similarity   

• Encourages model to focus on 
subtle style (not topic)

Hard-Positive Filtering 
(same as System I)  

•   2 dissimilar docs/author

Two-Level Clustering (Stage 2)  
• Document-level K-means (semantic 

groups)
• Author-level  K-means (style groups) 
• Combine matching doc-level & 

different author-level

Combine Hard Negatives  
• 50% BM25-based + 50% cluster-

based negatives
• Hard-negative mining is dataset-

wide for broader coverage

Train & Update
• Train on hard positives/negatives  
• Update model embeddings 
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Results

The ensemble system achieves the higher TPR at FPR=5%, demonstrating high performance and 

robustness across domains and adversarial settings.
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• Our ensemble-based authorship style representations from two complementary subsystems identify MGT 
across varied domains and adversarial attacks. 

• By integrating advanced training techniques such as GradCache, contrastive learning, and hard-
positive/negative mining, the system demonstrates strong cross-domain generalization. Thanks to capturing 
nuanced authorship-style representations, it achieves reliable MGT detection across various genres, LLMs, and 
adversarial attacks.

• Future work could extend the framework to handle more sophisticated adversarial attacks and support 
additional languages and low-resource domains, making it adaptable to a wider range of real-world 
applications

• Exploring domain adaptation techniques could improve robustness in detecting MGT by new or unseen 
models. 

Conclusions
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