GenAI Content Detection Task 3: Cross-Domain Machine-Generated Text Detection Challenge

Liam Dugan, Andrew Zhu, Firoj Alam, Preslav Nakov, Marianna Apidianaki, Chris Callison-Burch

COLING 2025

RAID: A Shared Benchmark for Robust Evaluation of Machine-Generated Text Detectors

Liam Dugan¹, Alyssa Hwang¹, Filip Trhlik², Josh Magnus Ludan¹ Andrew Zhu¹, Hainiu Xu³, Daphne Ippolito⁴, Chris Callison-Burch¹ University of Pennsylvania¹ University College London² King's College London³ Carnegie Mellon University⁴ {ldugan, ahwang16, jludan, andrz, ccb}@seas.upenn.edu hainiu.xu@kcl.ac.uk, filip.trhlik.21@ucl.ac.uk, daphnei@cmu.edu

Abstract

Many commercial and open-source models claim to detect machine-generated text with extremely high accuracy (99% or more). However, very few of these detectors are evaluated on shared benchmark datasets and even when they are, the datasets used for evaluation are insufficiently challenging-lacking variations in sampling strategy, adversarial attacks, and open-source generative models. In this work we present RAID: the largest and most challenging benchmark dataset for machinegenerated text detection. RAID includes over 6 million generations spanning 11 models, 8 domains, 11 adversarial attacks and 4 decoding strategies. Using RAID, we evaluate the out-ofdomain and adversarial robustness of 8 openand 4 closed-source detectors and find that current detectors are easily fooled by adversarial attacks, variations in sampling strategies, repetition penalties, and unseen generative models. We release our data1 along with a leaderboard2

Figure 1: Detectors for machine-generated text are often highly performant on default model settings but fail to detect more unusual settings such as using random sampling with a repetition penalty.

their own evaluation datasets and fail to test their models on shared resources—making it difficult to verify claims of accuracy and robustness. This has led to an erosion of trust in the efficacy of auto-

1	Models	Dom	ains	5	Decoding Strategy				
ChatGPT	LLaMA 2 70B (Chat)	Abstracts	Rec	ipes	Greedy	(temp. = 0)			
Cohere	Cohere (Chat)	Books Reddit		dit	Sampling (temp. = 1, p = 1)			
MPT-30B	MPT-30B (Chat)	News	Rev	iews					
Mistral 7B	Mistral 7B (Chat)	Poetry	Wik	ipedia	Repeti	tion Penalty			
GPT-2 XL	GPT-4	Czech*	German*		With 🗸	(rep = 1.2)			
GPT-3	11 models	Code* 1		domains	Without 🗙	(rep = 1.0)			
	Detectors				Adversario	al Attacks			
Neural	Metric-Based	Commercia		Altern	ative Spelling	Homoglyph			
RoBERTa-B (GF	PT-2) GLTR	GPT-Zero		Article Deletion		Number Swap			
RoBERTa-L (GPT-2) Fast DetectGPT		Originality.Al		Insert Paragraphs		Paraphrase			
RoBERTa (ChatGPT) Binoculars		Winston.A	J	Upper	Lower Swap	Synonym Swap			
RADAR LLMDet		ZeroGPT		Zero-Width Space		Misspelling			
LEMDEL		12 detectors		White	space Addition	11 attacks			

We found various weaknesses of classifiers

RoBERTa (GPT2)												
Books	0.987	0.588	0.287	0.548								
News	0.996	0.694	0.415	0.640								
Reddit	0.992	0.437	0.252	0.477								
Reviews	0.976	0.612	0.387	0.462								
Wiki	0.959	0.695	0.332	0.373								
	GPT2	ChatGPT	GPT4	Mistral								

Model-Specific

	RADAR													
Books	0.768	0.992	0.965	0.689										
News	0.810	0.999	0.999	0.663										
Reddit	0.491	0.969	0.792	0.467										
Reviews	0.222	0.004	0.007	0.118										
Wiki	0.706	0.999	0.963	0.613										
	GPT2	ChatGPT	GPT4	Mistral										

Domain-Specific

Homoglyp

The history of Madagascar
is distinguished by the
early 20 000 he
landm30.0% cient
superconcinence
containing Africa and
India<>

Adversarial

What happens when you train on RAID?

Research

- 1. Can a single detector be trained to detect generated text from many different known domains and LLMs accurately?
- 2. Can a single detector be robust to many different known adversarial attacks?

Task Setup

Phase 1: (September 18th - November 2nd) Released the training data and baseline results

Phase 2: (November 2nd - November 6th) Conduct the official evaluation on the test set and release the leaderboard

Phase 3: (November 6th - November 15th) System paper and summary paper writing stage

Subtask A

(Non-Adversarial)

- 11 LLMs
- 4 Decoding strategies
- 8 Domains

Subtask B

(Adversarial)

- 11 LLMs
- 4 Decoding strategies
- 8 Domains
- + 12 Adversarial Attacks

Subtask A Training Data

		Human	ChatGPT	dav003	GPT-4	Cohere	CohC	GPT-2	MPT	MPT-C	Mistral	MistC	Llama2-C
	Abstracts	1766	3532	3532	3532	3532	3532	7064	7064	7064	7064	7064	7064
	Books	1781	3562	3562	3562	3562	3562	7124	7124	7124	7124	7124	7124
	News	1780	3560	3560	3560	3560	3560	7120	7120	7120	7120	7120	7120
ij.	Poetry	1771	3542	3542	3542	3542	3542	7084	7084	7084	7084	7084	7084
158	Recipes	1772	3544	3544	3544	3544	3544	7088	7088	7088	7088	7088	7088
	Reddit	1779	3558	3558	3558	3558	3558	7116	7116	7116	7116	7116	7116
	Wiki	1779	3558	3558	3558	3558	3558	7116	7116	7116	7116	7116	7116
	Reviews	943	1886	1886	1886	1886	1886	3772	3772	3772	3772	3772	3772
	Total	13371	26742	26742	26742	26742	26742	53484	53484	53484	53484	53484	53484

x12 to each for adversarial

Evaluation Metric

TPR @ FPR=5%

"How much AI-Generated text do you correctly detect while maintaining a 5% False Positive Rate?"

Participants also got

Code for Adversarial Attacks Source Domains for Human Text

Results

Subtask A

(Non-Adversarial)

Team Ranking (Subtask A) Best Submission Result **99.4** (0.6) [Le] Leidos Leidos v1.0.3 99.3 (**0.4**) [Pa] Pangram Pangram USTC R-L Focal Loss 98.1 (1.3) [Al] ALERT ALERT v1.1 91.8 (9.4) [Cn] CNLP DistilBERT-NITS 90.5 (2.9) [Lx] LuxVeri R-B & R-Oai 82.6 (10.9) [Ba] Baseline Binoculars 79.0 (2.4) MOSAIC-4 [Mo] MOSAIC 75.2 (5.9) [80] 1-800 L3-60 Zero-shot 57.1 (9.6) [Ra] Random Adv. CDMGTD 3.2 (1.6)

Subtask B

(Adversarial)

Team Ra	nking (Subtask	B)
---------	---------	---------	----

	Best Submission	Result
[Le] Leidos	Leidos v1.0.2	97.7 (2.5)
[Pa] Pangram	Pangram	97.7 (2.9)
[Us] USTC	R-L Focal Loss	92.7 (9.5)
[Al] ALERT	ALERT v1.1	82.6 (15.5)
[Lx] LuxVeri	Fine-tuned R-B	80.1 (8.4)
[Ba] Baseline	Binoculars	71.3 (16.2)
[Mo] MOSAIC	MOSAIC-5	69.4 (16.3)
[<mark>80</mark>] 1-800	L3-60 Zero-shot	51.4 (15.4)
[Cn] CNLP	Advsub3	41.6 (10.4)
[Ra] Random	Adv. CDMGTD	6.5 (7.6)

Previous SoTA: 86.2

Pangram

Base Model

- Fine-tune Mistral NeMo classifier (12B params) on a large-scale corpus
 - Use LoRA training + linear classification head + LLM prediction head
- Preprocess data: (Remove zero-width, lowercase, convert unicode, etc.)

Key Insight: Hard Negative Mining

• Select the 50k examples in RAID with highest error \rightarrow Re-train the model

Leidos

Base Model

- Trained four classifiers using Distil-RoBERTa-base as the base model
 - Binary Classifier with & without Class Weighting
 - Multi-Class Classifier with & without Class Weighting

Key Insight: Class Weighting

- Compute weights using the formula $w_i = N / (C \times n_i)$
 - \circ N = total # docs, C = # classes, n_i = # docs in class i
- Upweights the loss on human text and downweights the loss on MGT

$$w_i = \frac{N}{C \times n_i}$$

[2] "Leidos at GenAI Detection Task 3: A Weight-Balanced Transformer Approach for AI Generated Text Detection Across Domains" (Edikala et al.

ALERT

Base Model

- Documents are embedded using an authorship style embedding model
 - Trained using contrastive learning on large corpus of **human authorship data**
 - Hard positive and negative mining using BM25 and k-means clustering
- Embeddings given to a single feed-forward layer and binary classification head

Key Insight: Human Authorship Data

• Style embeddings trained on only human data still separate MGT fairly well!

Broader Trends

- 1. Hard Positive and Negative Sampling was broadly effective and featured in many strong teams' submissions
- 2. Preprocessing and normalization of input text was effective at evading simple yet powerful adversarial attacks.
- 3. Utilizing or creating external data was broadly helpful even

when said data is from different LLMs or for a different task

4. Incredible diversity of modeling approaches!

Takeaway

RAID was supposed to be challenging!

Generator Model												
Detector	Aggregate \$	chatgpt	gpt4 ¢	gpt3 ¢	gpt2	mistral \$	mistral- chat \$	cohere	cohere- chat \$	llama- chat \$	mpt \$	mpt- chat \$
Leidos Detector v1.0.3	0.994	0.998	0.999	1.000	0.999	0.995	1.000	0.953	0.974	1.000	0.997	0.999
Pangram	0.993	0.998	1.000	0.988	0.998	0.990	0.998	0.971	0.977	1.000	0.992	0.998
Leidos Detector v1.0.2	0.993	0.999	1.000	1.000	0.995	0.985	0.999	0.966	0.967	0.998	0.995	0.999
Leidos Detector v1.0.4	0.992	0.998	1.000	1.000	0.998	0.987	0.999	0.958	0.954	0.999	0.997	1.000
Leidos Detector v1.0.1	0.991	0.998	0.999	1.000	0.997	0.986	1.000	0.942	0.965	0.999	0.995	0.998
roberta_focalloss	0.981	0.989	0.989	0.996	0.986	0.973	0.995	0.902	0.930	0.999	0.985	0.995
ALERT MGT Detector v1.1	0.918	0.976	0.943	0.917	0.919	0.862	0.973	0.706	0.848	0.988	0.905	0.960
DistilBERT-NITS	0.905	0.989	0.967	0.835	0.880	0.846	0.976	0.639	0.835	0.987	0.884	0.985
ALERT MGT Detector v1.2	0.893	0.958	0.917	0.932	0.897	0.826	0.943	0.725	0.823	0.952	0.873	0.922

We did not expect anyone to get over 99 TPR

RAID does have flaws

- Easy shortcuts for detection
 - e.g. regular \n characters, formatting errors
- Instances of Meta-Commentary
 - e.g. "Sure, I can help!"
- Degenerate / Repetitive output texts
 - Mainly for older continuation models

- 1. Can a single detector be trained to detect generated text from many different known domains and LLMs accurately?
- 2. Can a single detector be robust to many different known adversarial attacks?

Maybe?

Building Harder Benchmarks

Filtering out text with "shortcuts" Increasing diversity of text

More aggressive false positive rates

BBN Thank RTX BBN Technologies UNIVERSITY OF OREGON

Thanks!

Paper

https://raid-bench.xyz/shared-task

https://arxiv.org/abs/2501.08913

Read the Paper for more!

Subtask A: Performance Across Domains (Official Results)													
	News	Wiki	Reddit	Books	Abs.	Reviews	Poetry	Recipes	Total (σ)				
[Le] Leidos v1.0.3	99.9	99.8	98.3	99.4	99.9	98.6	99.3	100.0	99.4 (0.6)				
[Pa] Pangram	99.7	99.1	98.5	99.5	99.3	99.6	98.8	99.9	99.3 (0.4)				
[Le] Leidos v1.0.2	99.9	99.9	99.4	99.5	99.9	95.9	99.6	100.0	99.3 (1.2)				
[Le] Leidos v1.0.4	99.9	99.7	99.0	99.3	100.0	96.5	99.4	100.0	99.2 (1.1)				
[Le] Leidos v1.0.1	99.9	99.8	98.6	99.4	99.9	96.2	99.4	100.0	99.1 (1.2)				
[Us] R-L Focal Loss	99.0	97.8	96.1	98.1	99.8	97.0	97.0	99.9	98.1 (1.3)				
[AI] ALERT v1.1	99.7	95.4	75.7	99.9	99.9	87.2	78.3	98.3	91.8 (9.4)				
[Cn] DistilBERT-NITS	89.9	87.7	90.0	93.5	90.9	85.9	90.0	96.0	90.5 (2.9)				
[AI] ALERT v1.2	99.5	91.3	87.2	99.2	99.9	89.9	64.9	82.8	89.3 (11.0)				
[Lx] R-B & R-Oai	87.5	90.2	62.4	89.5	99.2	83.7	73.5	75.1	82.6 (10.9)				
[Lx] R-Oai & BERT	91.8	87.3	75.1	87.1	97.0	86.0	76.3	59.4	82.5 (11.1)				
[Lx] Fine-tuned R-B	87.5	89.7	61.7	89.6	98.8	82.5	66.3	74.6	81.3 (11.9)				
[Ba] Binoculars	80.7	76.5	81.3	82.8	76.0	78.0	80.1	76.4	79.0 (2.4)				
[Mo] MOSAIC-4	79.5	67.6	78.2	79.8	77.1	81.4	63.7	75.8	75.2 (5.9)				
[Mo] MOSAIC-5	79.0	65.8	76.7	79.8	76.5	77.2	64.8	75.1	74.5 (5.4)				
[Lx] Radar & R-L	91.6	73.7	76.3	78.1	74.2	58.7	45.7	73.5	71.5 (12.8)				
[Ba] RADAR	87.4	77.3	73.6	78.1	67.5	6.3	46.0	88.7	65.6 (25.7)				
[Ba] GLTR	67.7	63.6	63.2	71.9	60.1	65.0	18.2	67.9	59.7 (16.0)				
[80] L3-60 Zero-shot	63.6	36.5	61.5	65.4	55.3	68.9	51.5	53.9	57.1 (9.6)				
[80] M3-60 Zero-shot	58.1	58.1	65.8	63.3	44.1	67.1	53.2	50.5	56.5 (7.4)				
[Ba] openai-roberta-large	67.8	59.4	60.0	52.5	64.8	52.8	23.3	65.1	55.7 (13.3)				
[Cn] Advsubmission-3	27.1	26.1	52.8	57.1	30.1	48.6	38.0	94.0	46.7 (21.1)				
[Cn] AdvNew-Detector	14.0	16.2	40.4	39.2	34.7	29.4	17.8	91.0	35.3 (23.2)				
[Us] Roberta_dataaug.	4.6	3.6	40.5	7.3	83.1	3.1	5.1	98.8	30.8 (36.8)				
[Cn] AdvData_Detector	10.1	17.5	27.9	24.8	27.7	28.7	13.5	88.0	29.8 (23.0)				
[Lx] Radar R-B CGPT-R	20.0	16.0	4.8	2.5	51.1	62.1	4.4	32.9	24.2 (21.1)				
[Ra] Adv. CDMGTD	4.2	3.4	2.1	2.1	6.8	2.9	1.7	2.4	3.2 (1.6)				
Average Performance	70.7	66.6	68.4	71.8	74.6	67.7	58.1	78.5	69.5 (5.7)				

a -(0.00 L L D L L)

Subtask B: Performance Across Adversarial Attacks (Official Results)														
	AS AD HG IP NS PP MS SY UL WS ZW Tota													
[Le] Leidos v1.0.2	99.2	99.0	97.3	98.7	99.2	92.3	98.8	98.6	98.9	99.0	92.7	97.7 (2.5)		
[Pa] Pangram	99.2	98.7	91.9	99.3	99.2	91.6	99.0	96.2	99.3	99.3	99.3	97.7 (2.9)		
[Le] Leidos v1.0.4	99.1	99.0	94.7	98.7	99.2	94.8	98.8	98.6	98.9	98.8	90.9	97.6 (2.6)		
[Le] Leidos v1.0.3	99.3	99.3	93.6	98.7	99.4	96.3	99.2	99.1	99.2	99.2	84.2	97.2 (4.4)		
[Le] Leidos v1.0.1	99.0	99.0	86.1	98.1	99.1	94.8	98.9	98.8	98.8	98.5	78.8	95.7 (6.4)		
[Us] R-L Focal Loss	97.9	98.2	84.5	93.6	98.1	84.0	97.8	97.4	97.9	97.9	67.1	92.7 (9.5)		
[AI] ALERT v1.1	91.8	92.1	68.5	89.7	91.8	57.7	91.0	87.3	91.3	91.2	46.8	82.6 (15.5)		
[Lx] Fine-tuned R-B	80.5	78.1	90.4	79.8	79.8	77.9	77.9	74.4	75.0	66.2	100.0	80.1 (8.4)		
[Al] ALERT v1.2	89.9	89.0	61.9	84.1	88.6	57.1	88.6	84.1	87.2	85.6	40.2	78.8 (16.0)		
[Lx] R-B & R-Oai	81.7	79.4	41.7	81.2	81.1	78.1	79.3	75.8	76.1	68.0	86.9	76.0 (11.6)		
[Lx] R-Oai & BERT	81.6	79.4	20.9	81.7	82.2	75.8	79.6	77.6	76.7	77.1	83.7	74.9 (17.0)		
[Ba] Binoculars	78.2	74.3	37.7	71.7	77.1	80.3	78.0	43.5	73.8	70.1	99.1	71.3 (16.2)		
[Ba] Radar	70.8	67.9	59.3	73.7	71.0	67.3	69.5	67.5	70.4	66.1	82.2	69.6 (5.3)		
[Mo] MOSAIC-5	72.2	69.5	90.2	73.3	69.7	70.3	71.7	22.7	66.5	67.0	85.5	69.4 (16.3)		
[Mo] MOSAIC-4	72.9	70.8	86.6	74.5	71.3	71.9	72.5	28.5	68.6	67.5	71.4	69.3 (13.6)		
[Lx] Radar & R-L	70.3	61.2	21.2	73.0	69.9	73.0	63.9	74.9	55.7	60.2	91.3	65.5 (16.6)		
[Ba] GLTR	61.2	52.1	24.3	61.4	59.9	47.2	59.8	31.2	48.1	45.8	97.2	53.5 (18.1)		
[80] L3-60 Zero-shot	56.6	50.5	3.0	57.4	56.3	50.6	55.6	53.5	57.1	61.9	57.1	51.4 (15.4)		
[Ba] openai-roberta-L	52.4	33.2	21.3	55.1	51.7	72.9	39.5	79.4	19.3	40.1	99.9	51.3 (23.6)		
[80] M3-60 Zero-shot	55.6	48.6	3.6	56.7	52.2	37.7	53.7	40.2	56.5	59.7	56.5	48.1 (15.4)		
[Cn] Advsub3	46.7	45.1	20.8	46.7	46.5	18.0	46.8	41.6	46.7	46.7	46.7	41.6 (10.4)		
[Cn] AdvNew-Det.	35.3	35.2	18.9	35.3	35.4	11.9	35.4	31.6	35.3	35.3	35.3	31.7 (7.7)		
[Us] Roberta_dataaug.	30.8	31.6	16.4	31.8	30.8	26.8	30.4	30.1	30.8	29.5	11.6	27.6 (6.5)		
[Cn] AdvData_Det.	29.7	29.4	18.5	29.8	29.6	8.5	29.8	26.9	29.8	29.8	29.8	26.8 (6.5)		
[Lx] Radar R-B C-R	22.3	15.2	0.4	4.9	22.0	34.9	18.1	30.0	6.6	4.3	11.0	16.2 (10.6)		
[Ra] Adv. CDMGTD	3.2	3.0	24.8	3.2	3.2	3.5	3.2	3.2	3.2	3.2	20.8	6.5 (7.6)		
Average Performance	68.4	65.3	49.2	67.4	67.9	60.6	66.8	61.3	64.1	64.2	67.9	64.3 (5.3)		

Table 5: TPR at FPR=5% for detectors across different adversarial attacks along with their standard deviation (σ). Baselines are given the [Ba] tag. Abbreviations are: AS: Alternative Spelling, AD: Article Deletion, HG: Homoglyph, IP: Insert Paragraphs, NS: Number Swap, PP: Paraphrase, MS: Misspelling, SY: Synonym Swap, UL: Upper Lower Swap, WS: Whitespace Addition, ZW: Zero-Width Space Addition. Team rankings determined by the highest performing submission (see Table 8).